Learning Factored Representations in a Deep Mixture of Experts

نویسندگان

  • David Eigen
  • Marc'Aurelio Ranzato
  • Ilya Sutskever
چکیده

Mixtures of Experts combine the outputs of several “expert” networks, each of which specializes in a different part of the input space. This is achieved by training a “gating” network that maps each input to a distribution over the experts. Such models show promise for building larger networks that are still cheap to compute at test time, and more parallelizable at training time. In this this work, we extend the Mixture of Experts to a stacked model, the Deep Mixture of Experts, with multiple sets of gating and experts. This exponentially increases the number of effective experts by associating each input with a combination of experts at each layer, yet maintains a modest model size. On a randomly translated version of the MNIST dataset, we find that the Deep Mixture of Experts automatically learns to develop location-dependent (“where”) experts at the first layer, and class-specific (“what”) experts at the second layer. In addition, we see that the different combinations are in use when the model is applied to a dataset of speech monophones. These demonstrate effective use of all expert combinations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning to Factor Policies and Action-Value Functions: Factored Action Space Representations for Deep Reinforcement learning

Deep Reinforcement Learning (DRL) methods have performed well in an increasing numbering of high-dimensional visual decision making domains. Among all such visual decision making problems, those with discrete action spaces often tend to have underlying compositional structure in the said action space. Such action spaces often contain actions such as go left, go up as well as go diagonally up an...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Convoluted Mixture of Deep Experts for Robust Semantic Segmentation

Robust scene understanding of outdoor environments using passive optical sensors is a critical problem characterized by changing conditions throughout the day and across seasons. The perception models on a robot should be able learn features impervious to these factors in order to be operable in the real-world. In this paper, we propose a convoluted mixture of deep experts (CMoDE) model that en...

متن کامل

Deep Mixture of Diverse Experts for Large-Scale Visual Recognition

In this paper, a deep mixture of diverse experts algorithm is developed for seamlessly combining a set of base deep CNNs (convolutional neural networks) with diverse outputs (task spaces), e.g., such base deep CNNs are trained to recognize different subsets of tens of thousands of atomic object classes. First, a two-layer (category layer and object class layer) ontology is constructed to achiev...

متن کامل

The Relationship of Study and Learning approaches with Students’ Academic Achievement in Rafsanjan University of Medical Sciences

Introduction: Most experts consider learning approach as the fundamental basis of learning dividing it into two parts of deep learning approach and surface learning approach. This is an endeavor to investigate the relationship between learning and study approaches with academic achievement among students in Rafsanjan University of Medical Sciences. Methods: This descriptive cross-sectional stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1312.4314  شماره 

صفحات  -

تاریخ انتشار 2013